

特点:

● 频率范围: 0.03~0.5GHz

● 增益: 典型值 30dB

● 噪声系数: 典型值 0.45dB

● 输出 1dB 压缩点: 典型值 23.5dBm

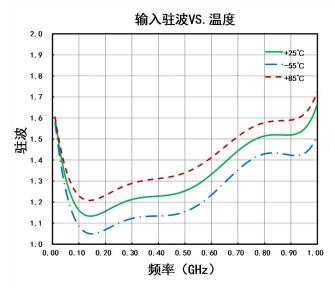
● 单电源工作: 典型值 5V/110mA

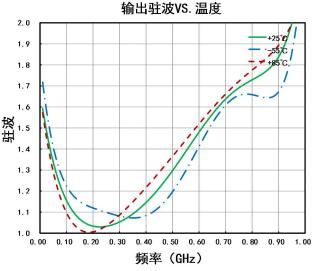
● 芯片尺寸: 0.8mm×0.76mm×0.1mm

RF_{IN} RF_{OUT}

产品简介:

YDC1116 是一款采用 GaAs pHEMT 工艺设计制造的低噪声放大器芯片。该芯片采用了片上金属化通孔工艺保证良好接地。芯片背面进行了金属化处理,适用于导电胶粘接或共晶烧结工艺。

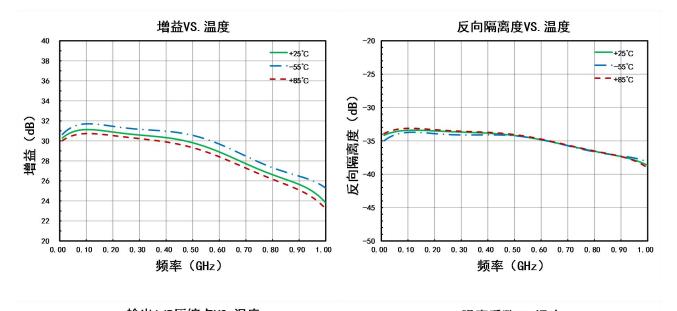

功能框图:

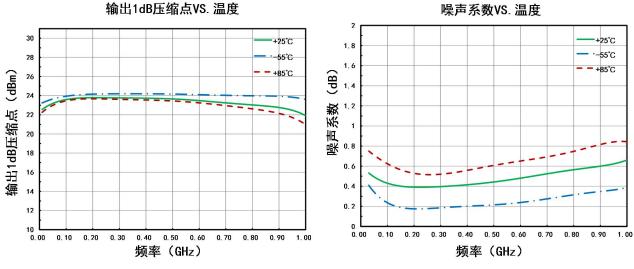

性能参数: (50Ω系统, T_A=+25℃, V_{dd}=+5V, I_{dd}=110mA)

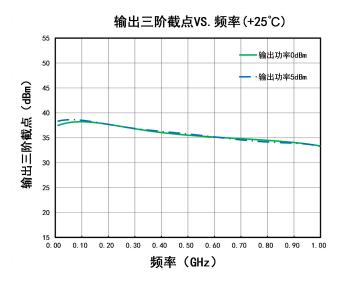
参数名称	符号	参数值			24.62
		MIN	TYP	MAX	单位
频率范围	f	0.03	-	0.5	GHz
增益	G	28	30	32	dB
增益平坦度	ΔG	-	±2.0	-	dB
输入驻波比	VSWR _I	-	1.3	1.5	-
输出驻波比	VSWRo	-	1.3	1.6	-
噪声系数	NF	-	0.45	1.0	dB
反向隔离度	I_R	30	34	-	dB
1dB 压缩点输出功率	OP _{1dB}	+20	+23.5	-	dBm
输出三阶截点	OIP ₃	+30	+36	-	dBm
电源电压	V_{dd}	+4.75	+5	+5.25	V
工作电流	I_{dd}	-	110	160	mA

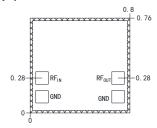
^{*:} OIP3测试条件:双音信号间隔 1MHz, Pout=0dBm/tone。

典型测试曲线: (50Ω系统, V_{dd}=+5V, I_{dd}=110mA)






^{**:} 芯片均经过在片 100%直流与 RF 测试。

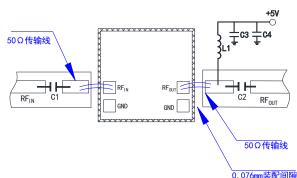


外形尺寸图:

注: 1.单位: mm;

- 2.芯片背面镀金,背面接地;
- 3.外形尺寸公差: ±0.05mm。
- 4.键合压点镀金,压点尺寸: 0.1×0.1mm;

引脚定义:


符号	描述
RF _{IN}	射频输入,芯片内部无隔直
RF _{OUT}	射频输出,芯片内部无隔直
GND/芯片背面	接地,芯片底部需接地良好

极限参数表:

参数名称	极限值	
输入射频功率,50Ω	+20dBm	
电源电压	+8V	
装配温度	300+℃, 20s	
工作温度	-55°C∼+125°C	
贮存温度	-55°C∼+150°C	

超过以上任何一项极限参数,可能造成器件永久损坏。

推荐装配图:

注:射频端口应尽量靠近微带线以缩短键合金丝尺寸,典型的装配间隙是 0.076~0.152mm,使用 Φ 25um 双金丝键合,建议 金丝长度 250~400um。

推荐应用电路器件值:

頻率 编 号	0.03~1GHz 推荐值	备注
C1、C2	10nF	
C3	0.1uF	
C4	2.2uF	
L1	1.5uH	电流>150mA

注: 电容、电感、磁珠可根据实际使用频段选用。

产品使用注意事项:

- 1. 本芯片产品需要在干燥、氮气环境中存储,在超净环境装配使用。
- 2. 裸芯片使用的砷化镓材料较脆,芯片表面容易受损,不能用干或湿化学方法清洁芯片表面,使用时须小心。
- 3. 芯片粘结装配时,需考虑热膨胀应力对芯片的影响,芯片建议烧结或粘结在热膨胀系数相近的载体上,如可伐、钨铜或钼铜垫片上,避免热膨胀应力匹配不当导致芯片开裂。
- 4. 芯片使用导电胶或合金烧结(合金温度不能超过300℃,时间不能超过20秒),使之充分接地。
- 5. 芯片射频端口使用 25um 双金丝键合,建议金丝长度 0.25~0.40mm (10~16 mils)。
- 6. 在存储和使用过程中注意防静电,烧结、键合台接地良好。