VDD

RF_{OUT}

 $\overline{\mathsf{RF}_\mathsf{IN}}$

特点: 功能框图:

● 频率范围: 0.9~1.3GHz

● 增益: 典型值 20.0dB

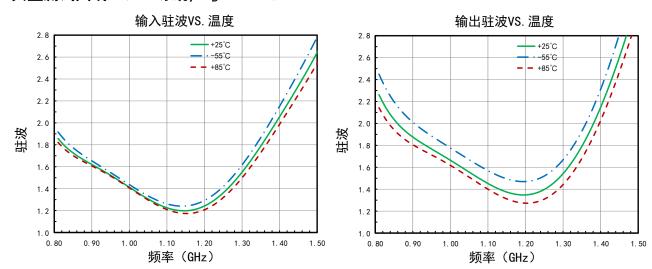
● 噪声系数: 典型值 2.5dB

● 1dB 压缩点输出功率: 典型值+26.5dBm

● GaAs 裸片

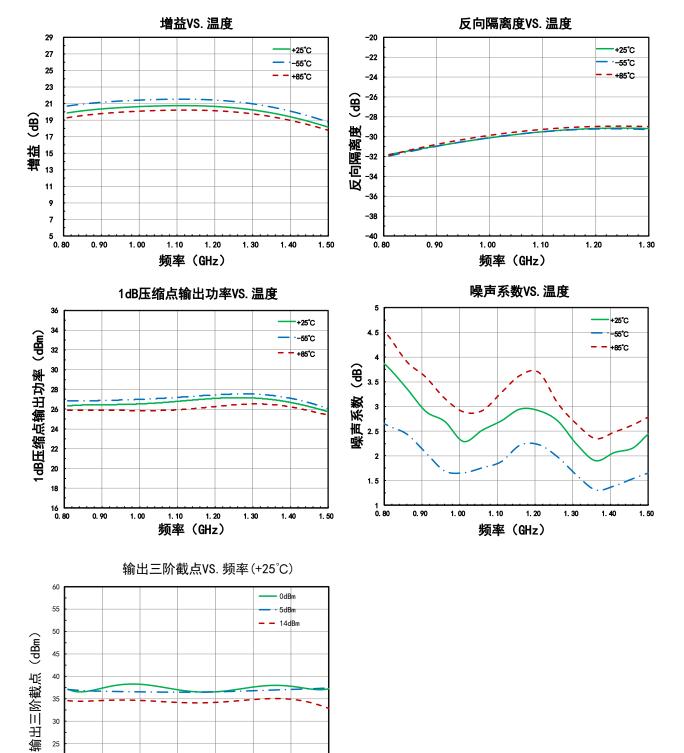
● 芯片尺寸: 1.12×1.08×0.1mm

产品简介:


YDC1156 是一款采用 GaAs 工艺设计制造的低噪声放大器芯片。该芯片采用了片上金属化通孔工艺保证良好接地。芯片背面进行了金属化处理,适用于导电胶粘接或共晶烧结工艺,芯片均经过在片 100%直流与 RF 测试。

性能参数: (50Ω系统)

	符号	测试条件	参数值					
参数名称			常温(+25℃)		全温	单位	备注	
			MIN	TYP	MAX	-55℃~+85℃		
频率范围	f		0.9	1	1.3	0.9~1.3	GHz	-
增益	G		19.0	20.0	21.5	18.5~22.5	dB	-
增益平坦度	ΔG	$V_{D} = +5.00V$	-	1.5	2.5	≤4.0	dB	-
输入驻波比	VSWR _I	f=0.9~1.3GHz	-	1.4:1	1.8:1	≤2.0:1	-	-
输出驻波比	VSWR _O	P _{IN} =-30dBm	-	1.6:1	2.0:1	≤2.0:1	-	-
噪声系数	NF		-	2.5	3.2	≤3.7	dB	-
反向隔离度	I_R		28	30	-	≥27	dB	-
1dB 压缩点输出功率	OP _{1dB}	V _D =+5.00V	+25.5	+26.5	-	≥+25.0	dBm	-
输出三阶截点 ^①	OIP ₃	f=0.9~1.3GHz	+35	+38	-	≥+30	dBm	-
电源电压	V_{D}	-	+4.75	+5.00	+5.25	+4.75~+5.25	V	功能正常
工作电流	I_D	V _D =+5.00V, P _{IN} =-30dBm	-	200	210	≤240	mA	静态电流


①输出三阶截点测试条件:双音信号间隔 1MHz,单音信号功率 0dBm。

典型测试曲线: (50Ω 系统, V_D=+5.00V)

1. 20

频率(GHz)

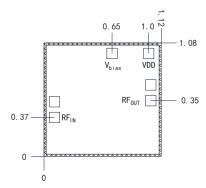
1.30

1.40

1.50

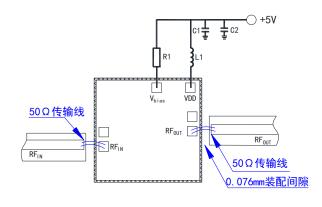
20

0.80


0.90

1.00

外形尺寸图:



注: 1.单位: mm;

- 2.芯片背面镀金:
- 3.键合压点镀金,尺寸: 0.1×0.1mm;
- 4.外形尺寸公差: ±0.05mm。

推荐装配图:

引脚定义:

符号	描述	
RF_{IN}	射频输入,内部有隔直	
RF _{OUT}	射频输出,内部有隔直	
V_{DD}	电源端口,+5.00V 供电	
$V_{\rm bias}$	电流控制端口	
GND	接地	
芯片背面	接地	

极限参数表:

参数名称	极限值		
输入射频功率.50Ω	+15.5dBm		
电源电压	+6V		
装配温度	+300°C, 20s		
工作温度	-55°C∼+85°C		
贮存温度	-55°C∼+150°C		
静电放电敏感度等级	1A		

超过以上任何一项极限参数,可能造成器件永久损坏。

推荐电路值:

)				
位号	推荐值/推荐型号	备注		
C1	1000pF	-		
C2	4.7uF	-		
L1	8.2nH	-		
R1	200 Ω	-		

注:分段使用时,根据使用频段调整隔直电容和馈电电感值。

注:射频端口应尽量靠近微带线以缩短键合金丝尺寸,典型的 装配间隙是 0.076~0.152mm, 使用Φ25um 双金丝键合, 建议 金丝长度 250~400um。

产品使用注意事项:

- 1. 本芯片产品需要在干燥、氮气环境中存储,在超净环境装配使用。
- 2. 裸芯片使用的砷化镓材料较脆,芯片表面容易受损,不能用干或湿化学方法清洁芯片表面,使用时须小心。
- 3. 芯片粘结装配时,需考虑热膨胀应力对芯片的影响,芯片建议烧结或粘结在热膨胀系数相近的载体上,如可伐、钨铜 或钼铜垫片上,避免热膨胀应力匹配不当导致芯片开裂。
- 4. 芯片使用导电胶或合金烧结(合金温度不能超过300℃,时间不能超过20秒),使之充分接地。
- 5. 芯片射频端口使用 25um 双金丝键合,建议金丝长度 0.25~0.40mm (10~16 mils)。
- 6. 在存储和使用过程中注意防静电,烧结、键合台接地良好。