

特点:

● 频率范围: 0.02~1.00GHz

● 增益: 典型值29.0dB

● 噪声系数: 典型值0.5dB

● 1dB 压缩点输出功率: 典型值+23.0dBm

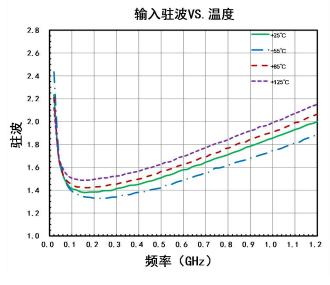
● GaAs裸片

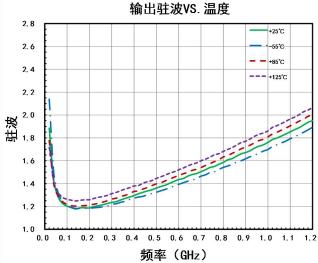
● 尺寸: 0.71×0.71×0.1mm

RF_{IN} RF_{OUT} GND

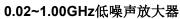
产品简介:

YDC1146是一款采用GaAs pHEMT 工艺设计制造的低噪声放大器芯片。该芯片采用了片上金属化通孔工艺保证良好接地。芯片背面进行了金属化处理,适用于导电胶粘接或共晶烧结工艺,芯片均经过在片 100%直流与 RF 测试。

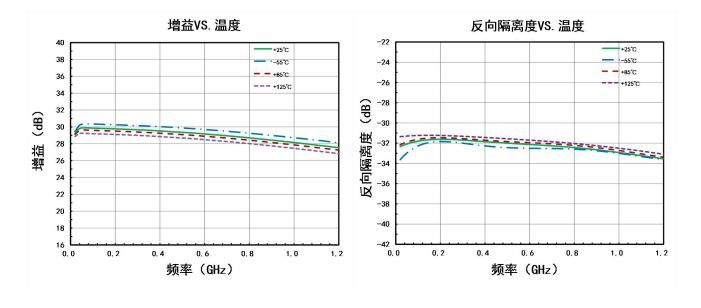

功能框图:

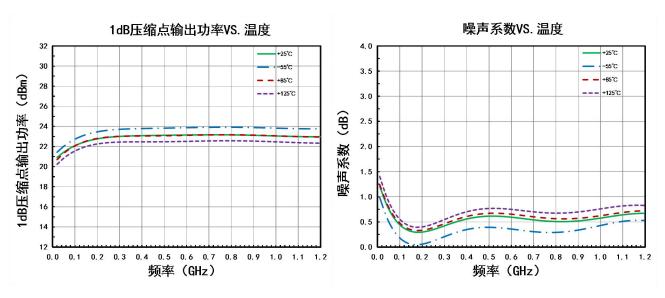

性能参数: (50Ω系统)

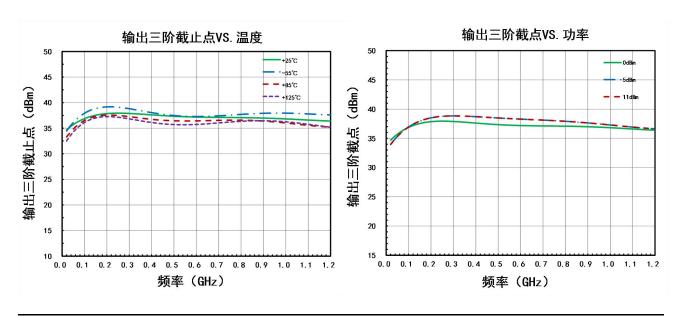
			参数值					
参数名称	符号	测试条件	常温	常温(+25℃) 全温		单位	备注	
			MIN	TYP	MAX	-55℃~+125℃		
频率范围	f		0.02		1.00	0.02~1.00	GHz	
增益	G		27.0	29.0	31.0	26.0~32.0	dB	
增益平坦度	ΔG	$V_D = +5.00V$		1.5	2.0	≤3.0	dB	
输入驻波	VSWR _I	f=0.02~1.00GHz		1.8:1	2.5:1	≤2.7:1		
输出驻波	VSWRo	P_{IN} =-30dBm		1.8:1	2.0:1	≤2.7:1		
噪声系数	NF			0.5	2.0	≤2.5	dB	
反向隔离度	I_R		30	32		≥29	dB	
1dB 压缩点输出功率	OP _{1dB}	$V_D = +5.00V$	+19.0	+23.0		≥+18.0	dBm	
输出三阶截点 [©]	OIP ₃	$f = 0.02 \sim 1.00 GHz$	+32	+36		≥+30	dBm	
电源电压	V_{D}		+4.75	+5.00	+5.25	+4.75~+5.25	V	功能正常
工作电流	I_D	V _D =+5.00V, P _{IN} =-30dBm		90	110	≤130	mA	


①输出三阶截点测试条件:双音信号间隔 1MHz,单音信号功率 0dBm。

典型测试曲线: (50Ω系统, V_D=+5.00V)

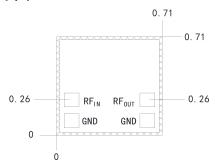






YUXI ELECTRONICS

202508V0.1



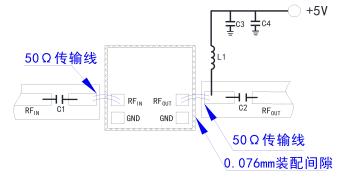
0.02~1.00GHz低噪声放大器

外形尺寸图:

注: 1.单位: mm;

- 2.芯片背面镀金;
- 3.键合压点镀金,尺寸: 0.1×0.1mm;
- 4.外形尺寸公差: ±0.05mm。

引脚定义:


符号	描述		
RF _{IN}	射频输入,内部无隔直		
RF _{OUT}	射频输出和电源,内部无隔直		
GND	接地		
芯片背面	接地		

极限参数表:

参数名称	极限值		
输入射频功率	+18dBm		
电源电压	0∼+6V		
装配温度	+300°C, 20s		
工作温度	-55∼+125°C		
贮存温度	-65∼+150°C		
静电放电敏感度等级	1A		

超过以上任何一项极限参数,可能造成器件永久损坏。

推荐装配图:

注:射频端口应尽量靠近基板微带线以缩短键合金丝尺寸,典型的装配间隙是 $0.076\sim0.152$ mm,使用 $\Phi25$ µm 双金丝键合,建议金丝长度 $250\sim400$ µm。

推荐电路值:

位号	推荐值/推荐型号	备注	
C1、C2	10nF		
С3	0.1uF		
C4	2.2uF		
L1	0402FSJ-1R0K (宽带电感)	电流≥150mA	

注:分段使用时,可根据使用频段调整隔直电容和馈电电感的 值。

产品使用注意事项:

- 1. 本芯片产品需要在干燥、氮气环境中存储,在超净环境装配使用。
- 2. 裸芯片使用的砷化镓材料较脆,芯片表面容易受损,不能用干或湿化学方法清洁芯片表面使用时必须小心。
- 3. 芯片粘结装配时,需考虑热膨胀应力对芯片的影响,芯片建议烧结或粘结在热膨胀系数相近的载体上,如可伐、钨铜或钼铜垫片上,避免热膨胀应力匹配不当导致芯片开裂。
- 4. 芯片底部用导电胶或合金烧结(合金温度不超过+300℃,时间不超过20秒),使之充分接地。
- 5. 芯片射频端口使用 25um 双金丝键合,建议金丝长度 0.25~0.40mm(10~16 mils)。
- 6. 在存储和使用过程中注意防静电,烧结、键合台接地良好。

附 1: 文件签审

拟制:	 日期:	2025. 08. 12
审核:	日期:	
产品审查:	日期:	
工艺审查:	日期:	
标准化:	日期:	
批 准:	日期:	
质量归档:	日期:	

附 2: 规格书修订记录

版本	日期	拟制	主要更改内容	变更单号
V0.0	2025.01.01	曾力	初版	/
V0.1	2025.08.12	张婷婷	补充低频 20MHz 指标,增加高温 125℃指标	/

附 3: 规格书模板标记

模板版本: 2025 版 定版时间: 2024.12.28